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KAGGLE DATA SCIENCE BOWL

• We are looking for interested members who would like to participate in 

Kaggle’s 2018 Data Science Bowl 

• The contest is being sponsored by Booz Allen Hamiliton and there are cash 

prizes available to the top 5 placing teams (submission deadline: April 9th)

• The competition is to create an algorithm to automate nucleus detection, which 

could help unlock cures for disease more quickly 

• Teams will create a computer model that can identify a range of nuclei across 

varied conditions

https://www.kaggle.com/c/data-science-bowl-2018


MACHINE LEARNING ALGORITHMS

• Representation: language for patterns/models, expressive power

• Evaluation: scoring methods for deciding what is a good fit of model to data

• Beware of overfitting  your model may be “too good” with your training data, but may 

not generalize well during testing

• Search: method for enumerating patterns/models

• Optimization techniques  most commonly used optimizer is gradient descent, which 

iteratively searches for the minimization of some error function (will not go into detail of 

how this works today)



ASSOCIATION RULE LEARNING

• Association rule learning is a rule-based machine learning method for 

discovering interesting relations between variables in large databases

• Such information can be used as the basis for decisions about marketing 

activities, Web usage mining, intrusion detection, continuous production, and 

bioinformatics



ASSOCIATION RULE LEARNING

• The problem of association rule mining is:

• Let I = {i1, i2, …, in} be a set of n attributes called items 

• Let D = {t1, t2, …, tm} be a set of transactions called the database 

• Each transaction D has a unique transaction ID and contains a subset of the items in I

• A rule is defined as an implication of the form: If X then Y where X and Y are subsets of I

• Every rule is composed by two different sets of items, also known as itemsets, X and Y, 

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side 

(RHS).

• Example association rule: If A and not B, then C



SUPPORT AND CONFIDENCE

• Support  is defined as the minimum percentage of transactions in the DB 

containing A and B. 

• Confidence is defined as the minimum percentage of those transactions 

containing A that also contain B.

• Ex. Suppose the DB contains 1 million transactions and that 10,000 of those transactions 

contain both A and B.

• We can then say that the support of the association if A then B is:

• S= 10,000/1,000,000 = 1%. 

• Likewise, if 50,000 of the transactions contain A and 10,000 out of those 50,000 also 

contain B then the association rule if A then B has a confidence 10,000/50,000 = 20%.

• Confidence is just the conditional probability of B given A.



ASSOCIATION RULE ALGORITHMS

• Association rule algorithms typically employ some sort of method to efficiently 

find rules that exceed a pre-defined support or confidence level

• They do so by finding all itemsets with the given minimum support and 

generating rules from them!

• Let’s look at an example on the next slide



WEATHER DATA

Total number of item sets with a minimum 

support of at least two instances: 12 one-item 

sets, 47 two-item sets, 39 three-item sets, 6 

four-item sets and 0 five-item sets



GENERATING RULES FROM ITEMSET
• Once all item sets with the required minimum support have been generated, 

we can turn them into rules

• Example 4-item set with a support of 4 instances:

• Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False 

and Play = Yes



DECISION TREE CLASSIFICATION

• A decision tree uses a tree structure to 

represent a number of possible decision 

paths and an outcome for each path

• Decision trees are very easy to 

understand and interpret, and also has 

the advantage of handling both 

numeric and categorical attributes 

(which isn’t true for other algorithms will 

discuss)



CONSTRUCTING A DECISION TREE

• Strategy: top down learning using recursive divide-and-conquer process

• First: select attribute for root node

Create branch for each possible attribute value

• Then: split instances into subsets

One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that reach the branch

• Stop if all instances have the same class



WHICH ATTRIBUTE TO SELECT?



CRITERIA FOR ATTRIBUTE SELECTION

• Which is the best attribute?

• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain

• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose attribute that gives 

greatest information gain

• Information gain requires measure of impurity

• Impurity measure that it uses is the entropy of the class distribution, which is a 

measure from information theory 



COMPUTING INFORMATION

• We have a probability distribution: the class distribution in a subset of 

instances

• The expected information required to determine an outcome (i.e., class value), 

is the distribution’s entropy

• Formula for computing the entropy:

• Entropy is maximal when all classes are equally likely and minimal when one 

of the classes has probability 1



COMPUTING INFORMATION GAIN

• Information gain: information before splitting – information after splitting

• Information gain for attributes from weather data:

Gain(Outlook ) = Info([9,5]) – info([2,3],[4,0],[3,2])

= 0.940 – 0.693
= 0.247 bits

Gain(Outlook ) = 0.247 bits

Gain(Temperature ) = 0.029 bits

Gain(Humidity ) = 0.152 bits

Gain(Windy ) = 0.048 bits



FINAL DECISION TREE

• Note: not all leaves need to be pure; sometimes identical 
instances have different classes

• Splitting stops when data cannot be split any further



RANDOM FOREST TREES

• Decision trees often can overfit the training data using the algorithm we just discussed 

• Most decision tree algorithms today use a slightly different measure of node purity 

that attempts to combat this (it is known as the gain ratio for those wanting to look it 

up)

• However, random forests is another algorithm that does well at handling this problem

• It works by building multiple decision trees and lets each tree vote on how to classify 

inputs 

• The final decision is made by the majority vote

• Again, we will not go into too much detail of this algorithm today, but it is something 

to know



NAÏVE BAYES CLASSIFICATION 

• Naïve Bayes classifiers are a family of simple probabilistic classifiers based on 

applying Bayes' theorem with strong (naive) independence assumptions between the 

features

• Independence assumption is almost never correct! But this scheme often works 

surprisingly well in practice

• Baye’s rule is stated as probability of an event, H, given evidence, E: 

• P(H | E) = P(E | H)P(H) / P(E) (we usually drop the P(E) term)

• A priori probability of H : P(H)

• Probability of event before evidence is seen

• A posteriori probability of H : P(H | E)

• Probability of event after evidence is seen

• Likelihood of H : P(E | H)



NAÏVE BAYES CLASSIFICATOIN

• Classification learning: what is the probability of the class given an instance?

• Evidence E = instance’s non-class attribute values

• Event H = class value of instance

• Naïve assumption: evidence splits into parts (i.e., attributes) that are 

conditionally independent

• This means, given n attributes, we can write Bayes’ rule using a product of 

per-attribute probabilities:
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PROBABILITIES FOR WEATHER DATA

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook

Prediction of a new day



ZERO-FREQUENCY PROBLEM

• What if an attribute value does not occur with every class value? (e.g., “Humidity = 

high” for class “yes”)

• Probability will be zero: 

• A posteriori probability will also be zero:

(Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination (Laplace 

estimator)

• Result: probabilities will never be zero

• Note: Naïve Bayes can handle numeric attributes using Gaussian probability 

distribution estimates, but we will not cover that today

P(Humidity =High | yes) = 0

P(yes |E) = 0



LOGISTIC REGRESSION FOR CLASSIFICATION
• Logistic regression is a mathematical model 

used in statistics to estimate (guess) the 

probability of an event occurring having 

been given some previous data

• Logistic Regression works with binary data, 

where either the event happens (1) or the 

event does not happen (0). So given some 

feature x it tries to find out whether some 

event y happens or not. 

• Logistic Regression uses the logistic function 

to find a model that fits with the data 

points. The function gives an 'S' shaped 

curve to model the data.



ODDS

• Logistic regression uses the concept of odds ratios to calculate the probability. 

This is defined as the ratio of the odds of an event happening to its not 

happening. 

• For example, the probability of a sports team to win a certain match might be 0.75. 

• The probability for that team to lose would be 1 – 0.75 = 0.25. 

• The odds for that team winning would be 0.75/0.25 = 3. This can be said as the odds of 

the team winning are 3 to 1

• The odds can be defined as:

• Odds = P(y = 1 | x) / 1 - P(y = 1| x)



LOGIT TRANSFORMATION

• The natural logarithm of the odds ratio is then taken in order to create the 

logistic equation. The new equation is know as the logit:

• Logit(P(x)) = ln(P(y = 1 | x) / 1 - P(y = 1| x))

• In Logistic regression the Logit of the probability is said to be linear with 

respect to x, so the logit becomes:

• Logit(P(x)) = a + bx

• Using the two equations together then gives the following:

• P(y = 1 | x) / 1 - P(y = 1| x) = ea + bx

• This then leads to the probability:

• P(Y = 1 | x) = ea + bx / 1 + ea + bx = 1 / 1 + e-(a + bx)



K-NN

• K-nearest neighbors algorithm (k-NN) is a non-parametric method used for 

classification and regression

• In both cases, the input consists of the k closest training examples in the 

feature space. The output depends on whether k-NN is used for classification 

or regression:

• In k-NN classification, the output is a class membership. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most common 

among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the 

object is simply assigned to the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This value is the 

average of the values of its k nearest neighbors.



K-NN EXAMPLE
• Example of k-NN classification:

• The test sample (green circle) should be 

classified either to the first class of blue 

squares or to the second class of red 

triangles. 

• If k = 3 (solid line circle) it is assigned 

to the second class because there are 2 

triangles and only 1 square inside the 

inner circle. 

• If k = 5 (dashed line circle) it is 

assigned to the first class (3 squares vs. 

2 triangles inside the outer circle).



LINEAR REGRESSION

• Linear regression is a special case of regression analysis, which tries to 

explain the relationship between a dependent variable and one or more 

explanatory variables

• Linear regression assumes that the output variable, Y, can be expressed as a 

linear combination of its input variables, X

• Y = b0 + b1x1 + … + bnxn

• Each input variable is given a “weight” in determining how important it is to the prediction 

(be careful, this is not always a correct interpretation)



LINEAR REGRESSION PICTURE

• The idea is to find the red curve, the 

blue points are actual samples. 

• With linear regression all points can be 

connected using a single, straight line. 

• This example uses simple linear 

regression, where the square of the 

distance between the red line and each 

sample point is minimized.



K-MEANS

• K-means is a clustering algorithm that aims to partition n observations into k 

clusters in which each observation belongs to the cluster with the nearest 

mean, serving as a prototype of the cluster (this prototype is called the 

centroid).

• This is the most commonly used unsupervised machine learning method

• It is hard to determine what to make k be, but there have been methods used 

overtime to best choose (often guess and check)



THE ALGORITHM

• To run a k-means algorithm, you have to 

randomly initialize k points to be centroids 

• Iteratively repeat the following until 

convergence:

• Cluster assignment 

• Go through each of the data points and 

depending on which centroid is closer, it assigns 

the data points to one of the k cluster centroids.

• Move centroids

• Calculate the average of all the points in a 

cluster and moves the centroid to that average 

location.



SKLEARN TUTORIAL

• Now we will look at using some of these machine learning algorithms using 

Python and the Sklearn library 
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• Some material was taken from Dr. Rasheed’s CSCI 4380 lecture material 


