
INTRODUCTION TO MACHINE
LEARNING ALGORITHMS
#DATADAWGS PRESENTATION BY JONATHAN WARING

KAGGLE DATA SCIENCE BOWL

• We are looking for interested members who would like to participate in

Kaggle’s 2018 Data Science Bowl

• The contest is being sponsored by Booz Allen Hamiliton and there are cash

prizes available to the top 5 placing teams (submission deadline: April 9th)

• The competition is to create an algorithm to automate nucleus detection, which

could help unlock cures for disease more quickly

• Teams will create a computer model that can identify a range of nuclei across

varied conditions

https://www.kaggle.com/c/data-science-bowl-2018

MACHINE LEARNING ALGORITHMS

• Representation: language for patterns/models, expressive power

• Evaluation: scoring methods for deciding what is a good fit of model to data

• Beware of overfitting your model may be “too good” with your training data, but may

not generalize well during testing

• Search: method for enumerating patterns/models

• Optimization techniques most commonly used optimizer is gradient descent, which

iteratively searches for the minimization of some error function (will not go into detail of

how this works today)

ASSOCIATION RULE LEARNING

• Association rule learning is a rule-based machine learning method for

discovering interesting relations between variables in large databases

• Such information can be used as the basis for decisions about marketing

activities, Web usage mining, intrusion detection, continuous production, and

bioinformatics

ASSOCIATION RULE LEARNING

• The problem of association rule mining is:

• Let I = {i1, i2, …, in} be a set of n attributes called items

• Let D = {t1, t2, …, tm} be a set of transactions called the database

• Each transaction D has a unique transaction ID and contains a subset of the items in I

• A rule is defined as an implication of the form: If X then Y where X and Y are subsets of I

• Every rule is composed by two different sets of items, also known as itemsets, X and Y,

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side

(RHS).

• Example association rule: If A and not B, then C

SUPPORT AND CONFIDENCE

• Support is defined as the minimum percentage of transactions in the DB

containing A and B.

• Confidence is defined as the minimum percentage of those transactions

containing A that also contain B.

• Ex. Suppose the DB contains 1 million transactions and that 10,000 of those transactions

contain both A and B.

• We can then say that the support of the association if A then B is:

• S= 10,000/1,000,000 = 1%.

• Likewise, if 50,000 of the transactions contain A and 10,000 out of those 50,000 also

contain B then the association rule if A then B has a confidence 10,000/50,000 = 20%.

• Confidence is just the conditional probability of B given A.

ASSOCIATION RULE ALGORITHMS

• Association rule algorithms typically employ some sort of method to efficiently

find rules that exceed a pre-defined support or confidence level

• They do so by finding all itemsets with the given minimum support and

generating rules from them!

• Let’s look at an example on the next slide

WEATHER DATA

Total number of item sets with a minimum

support of at least two instances: 12 one-item

sets, 47 two-item sets, 39 three-item sets, 6

four-item sets and 0 five-item sets

GENERATING RULES FROM ITEMSET
• Once all item sets with the required minimum support have been generated,

we can turn them into rules

• Example 4-item set with a support of 4 instances:

• Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False

and Play = Yes

DECISION TREE CLASSIFICATION

• A decision tree uses a tree structure to

represent a number of possible decision

paths and an outcome for each path

• Decision trees are very easy to

understand and interpret, and also has

the advantage of handling both

numeric and categorical attributes

(which isn’t true for other algorithms will

discuss)

CONSTRUCTING A DECISION TREE

• Strategy: top down learning using recursive divide-and-conquer process

• First: select attribute for root node

Create branch for each possible attribute value

• Then: split instances into subsets

One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that reach the branch

• Stop if all instances have the same class

WHICH ATTRIBUTE TO SELECT?

CRITERIA FOR ATTRIBUTE SELECTION

• Which is the best attribute?

• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain

• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose attribute that gives

greatest information gain

• Information gain requires measure of impurity

• Impurity measure that it uses is the entropy of the class distribution, which is a

measure from information theory

COMPUTING INFORMATION

• We have a probability distribution: the class distribution in a subset of

instances

• The expected information required to determine an outcome (i.e., class value),

is the distribution’s entropy

• Formula for computing the entropy:

• Entropy is maximal when all classes are equally likely and minimal when one

of the classes has probability 1

COMPUTING INFORMATION GAIN

• Information gain: information before splitting – information after splitting

• Information gain for attributes from weather data:

Gain(Outlook) = Info([9,5]) – info([2,3],[4,0],[3,2])

= 0.940 – 0.693
= 0.247 bits

Gain(Outlook) = 0.247 bits

Gain(Temperature) = 0.029 bits

Gain(Humidity) = 0.152 bits

Gain(Windy) = 0.048 bits

FINAL DECISION TREE

• Note: not all leaves need to be pure; sometimes identical
instances have different classes

• Splitting stops when data cannot be split any further

RANDOM FOREST TREES

• Decision trees often can overfit the training data using the algorithm we just discussed

• Most decision tree algorithms today use a slightly different measure of node purity

that attempts to combat this (it is known as the gain ratio for those wanting to look it

up)

• However, random forests is another algorithm that does well at handling this problem

• It works by building multiple decision trees and lets each tree vote on how to classify

inputs

• The final decision is made by the majority vote

• Again, we will not go into too much detail of this algorithm today, but it is something

to know

NAÏVE BAYES CLASSIFICATION

• Naïve Bayes classifiers are a family of simple probabilistic classifiers based on

applying Bayes' theorem with strong (naive) independence assumptions between the

features

• Independence assumption is almost never correct! But this scheme often works

surprisingly well in practice

• Baye’s rule is stated as probability of an event, H, given evidence, E:

• P(H | E) = P(E | H)P(H) / P(E) (we usually drop the P(E) term)

• A priori probability of H : P(H)

• Probability of event before evidence is seen

• A posteriori probability of H : P(H | E)

• Probability of event after evidence is seen

• Likelihood of H : P(E | H)

NAÏVE BAYES CLASSIFICATOIN

• Classification learning: what is the probability of the class given an instance?

• Evidence E = instance’s non-class attribute values

• Event H = class value of instance

• Naïve assumption: evidence splits into parts (i.e., attributes) that are

conditionally independent

• This means, given n attributes, we can write Bayes’ rule using a product of

per-attribute probabilities:

)(/)()|()|()|()|(21 EPHPHEPHEPHEPEHP n

PROBABILITIES FOR WEATHER DATA

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook

Prediction of a new day

ZERO-FREQUENCY PROBLEM

• What if an attribute value does not occur with every class value? (e.g., “Humidity =

high” for class “yes”)

• Probability will be zero:

• A posteriori probability will also be zero:

(Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination (Laplace

estimator)

• Result: probabilities will never be zero

• Note: Naïve Bayes can handle numeric attributes using Gaussian probability

distribution estimates, but we will not cover that today

P(Humidity =High | yes) = 0

P(yes |E) = 0

LOGISTIC REGRESSION FOR CLASSIFICATION
• Logistic regression is a mathematical model

used in statistics to estimate (guess) the

probability of an event occurring having

been given some previous data

• Logistic Regression works with binary data,

where either the event happens (1) or the

event does not happen (0). So given some

feature x it tries to find out whether some

event y happens or not.

• Logistic Regression uses the logistic function

to find a model that fits with the data

points. The function gives an 'S' shaped

curve to model the data.

ODDS

• Logistic regression uses the concept of odds ratios to calculate the probability.

This is defined as the ratio of the odds of an event happening to its not

happening.

• For example, the probability of a sports team to win a certain match might be 0.75.

• The probability for that team to lose would be 1 – 0.75 = 0.25.

• The odds for that team winning would be 0.75/0.25 = 3. This can be said as the odds of

the team winning are 3 to 1

• The odds can be defined as:

• Odds = P(y = 1 | x) / 1 - P(y = 1| x)

LOGIT TRANSFORMATION

• The natural logarithm of the odds ratio is then taken in order to create the

logistic equation. The new equation is know as the logit:

• Logit(P(x)) = ln(P(y = 1 | x) / 1 - P(y = 1| x))

• In Logistic regression the Logit of the probability is said to be linear with

respect to x, so the logit becomes:

• Logit(P(x)) = a + bx

• Using the two equations together then gives the following:

• P(y = 1 | x) / 1 - P(y = 1| x) = ea + bx

• This then leads to the probability:

• P(Y = 1 | x) = ea + bx / 1 + ea + bx = 1 / 1 + e-(a + bx)

K-NN

• K-nearest neighbors algorithm (k-NN) is a non-parametric method used for

classification and regression

• In both cases, the input consists of the k closest training examples in the

feature space. The output depends on whether k-NN is used for classification

or regression:

• In k-NN classification, the output is a class membership. An object is classified by a

majority vote of its neighbors, with the object being assigned to the class most common

among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the

object is simply assigned to the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This value is the

average of the values of its k nearest neighbors.

K-NN EXAMPLE
• Example of k-NN classification:

• The test sample (green circle) should be

classified either to the first class of blue

squares or to the second class of red

triangles.

• If k = 3 (solid line circle) it is assigned

to the second class because there are 2

triangles and only 1 square inside the

inner circle.

• If k = 5 (dashed line circle) it is

assigned to the first class (3 squares vs.

2 triangles inside the outer circle).

LINEAR REGRESSION

• Linear regression is a special case of regression analysis, which tries to

explain the relationship between a dependent variable and one or more

explanatory variables

• Linear regression assumes that the output variable, Y, can be expressed as a

linear combination of its input variables, X

• Y = b0 + b1x1 + … + bnxn

• Each input variable is given a “weight” in determining how important it is to the prediction

(be careful, this is not always a correct interpretation)

LINEAR REGRESSION PICTURE

• The idea is to find the red curve, the

blue points are actual samples.

• With linear regression all points can be

connected using a single, straight line.

• This example uses simple linear

regression, where the square of the

distance between the red line and each

sample point is minimized.

K-MEANS

• K-means is a clustering algorithm that aims to partition n observations into k

clusters in which each observation belongs to the cluster with the nearest

mean, serving as a prototype of the cluster (this prototype is called the

centroid).

• This is the most commonly used unsupervised machine learning method

• It is hard to determine what to make k be, but there have been methods used

overtime to best choose (often guess and check)

THE ALGORITHM

• To run a k-means algorithm, you have to

randomly initialize k points to be centroids

• Iteratively repeat the following until

convergence:

• Cluster assignment

• Go through each of the data points and

depending on which centroid is closer, it assigns

the data points to one of the k cluster centroids.

• Move centroids

• Calculate the average of all the points in a

cluster and moves the centroid to that average

location.

SKLEARN TUTORIAL

• Now we will look at using some of these machine learning algorithms using

Python and the Sklearn library

REFERENCES

• Some material was taken from Dr. Rasheed’s CSCI 4380 lecture material

