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KAGGLE DATA SCIENCE BOWL

• We are looking for interested members who would like to participate in 

Kaggle’s 2018 Data Science Bowl 

• The contest is being sponsored by Booz Allen Hamiliton and there are cash 

prizes available to the top 5 placing teams (submission deadline: April 9th)

• The competition is to create an algorithm to automate nucleus detection, which 

could help unlock cures for disease more quickly 

• Teams will create a computer model that can identify a range of nuclei across 

varied conditions

https://www.kaggle.com/c/data-science-bowl-2018


MACHINE LEARNING ALGORITHMS

• Representation: language for patterns/models, expressive power

• Evaluation: scoring methods for deciding what is a good fit of model to data

• Beware of overfitting  your model may be “too good” with your training data, but may 

not generalize well during testing

• Search: method for enumerating patterns/models

• Optimization techniques  most commonly used optimizer is gradient descent, which 

iteratively searches for the minimization of some error function (will not go into detail of 

how this works today)



ASSOCIATION RULE LEARNING

• Association rule learning is a rule-based machine learning method for 

discovering interesting relations between variables in large databases

• Such information can be used as the basis for decisions about marketing 

activities, Web usage mining, intrusion detection, continuous production, and 

bioinformatics



ASSOCIATION RULE LEARNING

• The problem of association rule mining is:

• Let I = {i1, i2, …, in} be a set of n attributes called items 

• Let D = {t1, t2, …, tm} be a set of transactions called the database 

• Each transaction D has a unique transaction ID and contains a subset of the items in I

• A rule is defined as an implication of the form: If X then Y where X and Y are subsets of I

• Every rule is composed by two different sets of items, also known as itemsets, X and Y, 

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side 

(RHS).

• Example association rule: If A and not B, then C



SUPPORT AND CONFIDENCE

• Support  is defined as the minimum percentage of transactions in the DB 

containing A and B. 

• Confidence is defined as the minimum percentage of those transactions 

containing A that also contain B.

• Ex. Suppose the DB contains 1 million transactions and that 10,000 of those transactions 

contain both A and B.

• We can then say that the support of the association if A then B is:

• S= 10,000/1,000,000 = 1%. 

• Likewise, if 50,000 of the transactions contain A and 10,000 out of those 50,000 also 

contain B then the association rule if A then B has a confidence 10,000/50,000 = 20%.

• Confidence is just the conditional probability of B given A.



ASSOCIATION RULE ALGORITHMS

• Association rule algorithms typically employ some sort of method to efficiently 

find rules that exceed a pre-defined support or confidence level

• They do so by finding all itemsets with the given minimum support and 

generating rules from them!

• Let’s look at an example on the next slide



WEATHER DATA

Total number of item sets with a minimum 

support of at least two instances: 12 one-item 

sets, 47 two-item sets, 39 three-item sets, 6 

four-item sets and 0 five-item sets



GENERATING RULES FROM ITEMSET
• Once all item sets with the required minimum support have been generated, 

we can turn them into rules

• Example 4-item set with a support of 4 instances:

• Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False 

and Play = Yes



DECISION TREE CLASSIFICATION

• A decision tree uses a tree structure to 

represent a number of possible decision 

paths and an outcome for each path

• Decision trees are very easy to 

understand and interpret, and also has 

the advantage of handling both 

numeric and categorical attributes 

(which isn’t true for other algorithms will 

discuss)



CONSTRUCTING A DECISION TREE

• Strategy: top down learning using recursive divide-and-conquer process

• First: select attribute for root node

Create branch for each possible attribute value

• Then: split instances into subsets

One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that reach the branch

• Stop if all instances have the same class



WHICH ATTRIBUTE TO SELECT?



CRITERIA FOR ATTRIBUTE SELECTION

• Which is the best attribute?

• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain

• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose attribute that gives 

greatest information gain

• Information gain requires measure of impurity

• Impurity measure that it uses is the entropy of the class distribution, which is a 

measure from information theory 



COMPUTING INFORMATION

• We have a probability distribution: the class distribution in a subset of 

instances

• The expected information required to determine an outcome (i.e., class value), 

is the distribution’s entropy

• Formula for computing the entropy:

• Entropy is maximal when all classes are equally likely and minimal when one 

of the classes has probability 1



COMPUTING INFORMATION GAIN

• Information gain: information before splitting – information after splitting

• Information gain for attributes from weather data:

Gain(Outlook ) = Info([9,5]) – info([2,3],[4,0],[3,2])

= 0.940 – 0.693
= 0.247 bits

Gain(Outlook ) = 0.247 bits

Gain(Temperature ) = 0.029 bits

Gain(Humidity ) = 0.152 bits

Gain(Windy ) = 0.048 bits



FINAL DECISION TREE

• Note: not all leaves need to be pure; sometimes identical 
instances have different classes

• Splitting stops when data cannot be split any further



RANDOM FOREST TREES

• Decision trees often can overfit the training data using the algorithm we just discussed 

• Most decision tree algorithms today use a slightly different measure of node purity 

that attempts to combat this (it is known as the gain ratio for those wanting to look it 

up)

• However, random forests is another algorithm that does well at handling this problem

• It works by building multiple decision trees and lets each tree vote on how to classify 

inputs 

• The final decision is made by the majority vote

• Again, we will not go into too much detail of this algorithm today, but it is something 

to know



NAÏVE BAYES CLASSIFICATION 

• Naïve Bayes classifiers are a family of simple probabilistic classifiers based on 

applying Bayes' theorem with strong (naive) independence assumptions between the 

features

• Independence assumption is almost never correct! But this scheme often works 

surprisingly well in practice

• Baye’s rule is stated as probability of an event, H, given evidence, E: 

• P(H | E) = P(E | H)P(H) / P(E) (we usually drop the P(E) term)

• A priori probability of H : P(H)

• Probability of event before evidence is seen

• A posteriori probability of H : P(H | E)

• Probability of event after evidence is seen

• Likelihood of H : P(E | H)



NAÏVE BAYES CLASSIFICATOIN

• Classification learning: what is the probability of the class given an instance?

• Evidence E = instance’s non-class attribute values

• Event H = class value of instance

• Naïve assumption: evidence splits into parts (i.e., attributes) that are 

conditionally independent

• This means, given n attributes, we can write Bayes’ rule using a product of 

per-attribute probabilities:
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PROBABILITIES FOR WEATHER DATA

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook

Prediction of a new day



ZERO-FREQUENCY PROBLEM

• What if an attribute value does not occur with every class value? (e.g., “Humidity = 

high” for class “yes”)

• Probability will be zero: 

• A posteriori probability will also be zero:

(Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination (Laplace 

estimator)

• Result: probabilities will never be zero

• Note: Naïve Bayes can handle numeric attributes using Gaussian probability 

distribution estimates, but we will not cover that today

P(Humidity =High | yes) = 0

P(yes |E) = 0



LOGISTIC REGRESSION FOR CLASSIFICATION
• Logistic regression is a mathematical model 

used in statistics to estimate (guess) the 

probability of an event occurring having 

been given some previous data

• Logistic Regression works with binary data, 

where either the event happens (1) or the 

event does not happen (0). So given some 

feature x it tries to find out whether some 

event y happens or not. 

• Logistic Regression uses the logistic function 

to find a model that fits with the data 

points. The function gives an 'S' shaped 

curve to model the data.



ODDS

• Logistic regression uses the concept of odds ratios to calculate the probability. 

This is defined as the ratio of the odds of an event happening to its not 

happening. 

• For example, the probability of a sports team to win a certain match might be 0.75. 

• The probability for that team to lose would be 1 – 0.75 = 0.25. 

• The odds for that team winning would be 0.75/0.25 = 3. This can be said as the odds of 

the team winning are 3 to 1

• The odds can be defined as:

• Odds = P(y = 1 | x) / 1 - P(y = 1| x)



LOGIT TRANSFORMATION

• The natural logarithm of the odds ratio is then taken in order to create the 

logistic equation. The new equation is know as the logit:

• Logit(P(x)) = ln(P(y = 1 | x) / 1 - P(y = 1| x))

• In Logistic regression the Logit of the probability is said to be linear with 

respect to x, so the logit becomes:

• Logit(P(x)) = a + bx

• Using the two equations together then gives the following:

• P(y = 1 | x) / 1 - P(y = 1| x) = ea + bx

• This then leads to the probability:

• P(Y = 1 | x) = ea + bx / 1 + ea + bx = 1 / 1 + e-(a + bx)



K-NN

• K-nearest neighbors algorithm (k-NN) is a non-parametric method used for 

classification and regression

• In both cases, the input consists of the k closest training examples in the 

feature space. The output depends on whether k-NN is used for classification 

or regression:

• In k-NN classification, the output is a class membership. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most common 

among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the 

object is simply assigned to the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This value is the 

average of the values of its k nearest neighbors.



K-NN EXAMPLE
• Example of k-NN classification:

• The test sample (green circle) should be 

classified either to the first class of blue 

squares or to the second class of red 

triangles. 

• If k = 3 (solid line circle) it is assigned 

to the second class because there are 2 

triangles and only 1 square inside the 

inner circle. 

• If k = 5 (dashed line circle) it is 

assigned to the first class (3 squares vs. 

2 triangles inside the outer circle).



LINEAR REGRESSION

• Linear regression is a special case of regression analysis, which tries to 

explain the relationship between a dependent variable and one or more 

explanatory variables

• Linear regression assumes that the output variable, Y, can be expressed as a 

linear combination of its input variables, X

• Y = b0 + b1x1 + … + bnxn

• Each input variable is given a “weight” in determining how important it is to the prediction 

(be careful, this is not always a correct interpretation)



LINEAR REGRESSION PICTURE

• The idea is to find the red curve, the 

blue points are actual samples. 

• With linear regression all points can be 

connected using a single, straight line. 

• This example uses simple linear 

regression, where the square of the 

distance between the red line and each 

sample point is minimized.



K-MEANS

• K-means is a clustering algorithm that aims to partition n observations into k 

clusters in which each observation belongs to the cluster with the nearest 

mean, serving as a prototype of the cluster (this prototype is called the 

centroid).

• This is the most commonly used unsupervised machine learning method

• It is hard to determine what to make k be, but there have been methods used 

overtime to best choose (often guess and check)



THE ALGORITHM

• To run a k-means algorithm, you have to 

randomly initialize k points to be centroids 

• Iteratively repeat the following until 

convergence:

• Cluster assignment 

• Go through each of the data points and 

depending on which centroid is closer, it assigns 

the data points to one of the k cluster centroids.

• Move centroids

• Calculate the average of all the points in a 

cluster and moves the centroid to that average 

location.



SKLEARN TUTORIAL

• Now we will look at using some of these machine learning algorithms using 

Python and the Sklearn library 
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