
INTRODUCTION TO MACHINE
LEARNING ALGORITHMS
#DATADAWGS PRESENTATION BY JONATHAN WARING

KAGGLE DATA SCIENCE BOWL

• We are looking for interested members who would like to participate in

Kaggle’s 2018 Data Science Bowl

• The contest is being sponsored by Booz Allen Hamiliton and there are cash

prizes available to the top 5 placing teams (submission deadline: April 9th)

• The competition is to create an algorithm to automate nucleus detection, which

could help unlock cures for disease more quickly

• Teams will create a computer model that can identify a range of nuclei across

varied conditions

https://www.kaggle.com/c/data-science-bowl-2018

MACHINE LEARNING ALGORITHMS

• Representation: language for patterns/models, expressive power

• Evaluation: scoring methods for deciding what is a good fit of model to data

• Beware of overfitting  your model may be “too good” with your training data, but may

not generalize well during testing

• Search: method for enumerating patterns/models

• Optimization techniques  most commonly used optimizer is gradient descent, which

iteratively searches for the minimization of some error function (will not go into detail of

how this works today)

ASSOCIATION RULE LEARNING

• Association rule learning is a rule-based machine learning method for

discovering interesting relations between variables in large databases

• Such information can be used as the basis for decisions about marketing

activities, Web usage mining, intrusion detection, continuous production, and

bioinformatics

ASSOCIATION RULE LEARNING

• The problem of association rule mining is:

• Let I = {i1, i2, …, in} be a set of n attributes called items

• Let D = {t1, t2, …, tm} be a set of transactions called the database

• Each transaction D has a unique transaction ID and contains a subset of the items in I

• A rule is defined as an implication of the form: If X then Y where X and Y are subsets of I

• Every rule is composed by two different sets of items, also known as itemsets, X and Y,

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side

(RHS).

• Example association rule: If A and not B, then C

SUPPORT AND CONFIDENCE

• Support is defined as the minimum percentage of transactions in the DB

containing A and B.

• Confidence is defined as the minimum percentage of those transactions

containing A that also contain B.

• Ex. Suppose the DB contains 1 million transactions and that 10,000 of those transactions

contain both A and B.

• We can then say that the support of the association if A then B is:

• S= 10,000/1,000,000 = 1%.

• Likewise, if 50,000 of the transactions contain A and 10,000 out of those 50,000 also

contain B then the association rule if A then B has a confidence 10,000/50,000 = 20%.

• Confidence is just the conditional probability of B given A.

ASSOCIATION RULE ALGORITHMS

• Association rule algorithms typically employ some sort of method to efficiently

find rules that exceed a pre-defined support or confidence level

• They do so by finding all itemsets with the given minimum support and

generating rules from them!

• Let’s look at an example on the next slide

WEATHER DATA

Total number of item sets with a minimum

support of at least two instances: 12 one-item

sets, 47 two-item sets, 39 three-item sets, 6

four-item sets and 0 five-item sets

GENERATING RULES FROM ITEMSET
• Once all item sets with the required minimum support have been generated,

we can turn them into rules

• Example 4-item set with a support of 4 instances:

• Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False

and Play = Yes

DECISION TREE CLASSIFICATION

• A decision tree uses a tree structure to

represent a number of possible decision

paths and an outcome for each path

• Decision trees are very easy to

understand and interpret, and also has

the advantage of handling both

numeric and categorical attributes

(which isn’t true for other algorithms will

discuss)

CONSTRUCTING A DECISION TREE

• Strategy: top down learning using recursive divide-and-conquer process

• First: select attribute for root node

Create branch for each possible attribute value

• Then: split instances into subsets

One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that reach the branch

• Stop if all instances have the same class

WHICH ATTRIBUTE TO SELECT?

CRITERIA FOR ATTRIBUTE SELECTION

• Which is the best attribute?

• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain

• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose attribute that gives

greatest information gain

• Information gain requires measure of impurity

• Impurity measure that it uses is the entropy of the class distribution, which is a

measure from information theory

COMPUTING INFORMATION

• We have a probability distribution: the class distribution in a subset of

instances

• The expected information required to determine an outcome (i.e., class value),

is the distribution’s entropy

• Formula for computing the entropy:

• Entropy is maximal when all classes are equally likely and minimal when one

of the classes has probability 1

COMPUTING INFORMATION GAIN

• Information gain: information before splitting – information after splitting

• Information gain for attributes from weather data:

Gain(Outlook) = Info([9,5]) – info([2,3],[4,0],[3,2])

= 0.940 – 0.693
= 0.247 bits

Gain(Outlook) = 0.247 bits

Gain(Temperature) = 0.029 bits

Gain(Humidity) = 0.152 bits

Gain(Windy) = 0.048 bits

FINAL DECISION TREE

• Note: not all leaves need to be pure; sometimes identical
instances have different classes

• Splitting stops when data cannot be split any further

RANDOM FOREST TREES

• Decision trees often can overfit the training data using the algorithm we just discussed

• Most decision tree algorithms today use a slightly different measure of node purity

that attempts to combat this (it is known as the gain ratio for those wanting to look it

up)

• However, random forests is another algorithm that does well at handling this problem

• It works by building multiple decision trees and lets each tree vote on how to classify

inputs

• The final decision is made by the majority vote

• Again, we will not go into too much detail of this algorithm today, but it is something

to know

NAÏVE BAYES CLASSIFICATION

• Naïve Bayes classifiers are a family of simple probabilistic classifiers based on

applying Bayes' theorem with strong (naive) independence assumptions between the

features

• Independence assumption is almost never correct! But this scheme often works

surprisingly well in practice

• Baye’s rule is stated as probability of an event, H, given evidence, E:

• P(H | E) = P(E | H)P(H) / P(E) (we usually drop the P(E) term)

• A priori probability of H : P(H)

• Probability of event before evidence is seen

• A posteriori probability of H : P(H | E)

• Probability of event after evidence is seen

• Likelihood of H : P(E | H)

NAÏVE BAYES CLASSIFICATOIN

• Classification learning: what is the probability of the class given an instance?

• Evidence E = instance’s non-class attribute values

• Event H = class value of instance

• Naïve assumption: evidence splits into parts (i.e., attributes) that are

conditionally independent

• This means, given n attributes, we can write Bayes’ rule using a product of

per-attribute probabilities:

)(/)()|()|()|()|(21 EPHPHEPHEPHEPEHP n

PROBABILITIES FOR WEATHER DATA

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook

Prediction of a new day

ZERO-FREQUENCY PROBLEM

• What if an attribute value does not occur with every class value? (e.g., “Humidity =

high” for class “yes”)

• Probability will be zero:

• A posteriori probability will also be zero:

(Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination (Laplace

estimator)

• Result: probabilities will never be zero

• Note: Naïve Bayes can handle numeric attributes using Gaussian probability

distribution estimates, but we will not cover that today

P(Humidity =High | yes) = 0

P(yes |E) = 0

LOGISTIC REGRESSION FOR CLASSIFICATION
• Logistic regression is a mathematical model

used in statistics to estimate (guess) the

probability of an event occurring having

been given some previous data

• Logistic Regression works with binary data,

where either the event happens (1) or the

event does not happen (0). So given some

feature x it tries to find out whether some

event y happens or not.

• Logistic Regression uses the logistic function

to find a model that fits with the data

points. The function gives an 'S' shaped

curve to model the data.

ODDS

• Logistic regression uses the concept of odds ratios to calculate the probability.

This is defined as the ratio of the odds of an event happening to its not

happening.

• For example, the probability of a sports team to win a certain match might be 0.75.

• The probability for that team to lose would be 1 – 0.75 = 0.25.

• The odds for that team winning would be 0.75/0.25 = 3. This can be said as the odds of

the team winning are 3 to 1

• The odds can be defined as:

• Odds = P(y = 1 | x) / 1 - P(y = 1| x)

LOGIT TRANSFORMATION

• The natural logarithm of the odds ratio is then taken in order to create the

logistic equation. The new equation is know as the logit:

• Logit(P(x)) = ln(P(y = 1 | x) / 1 - P(y = 1| x))

• In Logistic regression the Logit of the probability is said to be linear with

respect to x, so the logit becomes:

• Logit(P(x)) = a + bx

• Using the two equations together then gives the following:

• P(y = 1 | x) / 1 - P(y = 1| x) = ea + bx

• This then leads to the probability:

• P(Y = 1 | x) = ea + bx / 1 + ea + bx = 1 / 1 + e-(a + bx)

K-NN

• K-nearest neighbors algorithm (k-NN) is a non-parametric method used for

classification and regression

• In both cases, the input consists of the k closest training examples in the

feature space. The output depends on whether k-NN is used for classification

or regression:

• In k-NN classification, the output is a class membership. An object is classified by a

majority vote of its neighbors, with the object being assigned to the class most common

among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the

object is simply assigned to the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This value is the

average of the values of its k nearest neighbors.

K-NN EXAMPLE
• Example of k-NN classification:

• The test sample (green circle) should be

classified either to the first class of blue

squares or to the second class of red

triangles.

• If k = 3 (solid line circle) it is assigned

to the second class because there are 2

triangles and only 1 square inside the

inner circle.

• If k = 5 (dashed line circle) it is

assigned to the first class (3 squares vs.

2 triangles inside the outer circle).

LINEAR REGRESSION

• Linear regression is a special case of regression analysis, which tries to

explain the relationship between a dependent variable and one or more

explanatory variables

• Linear regression assumes that the output variable, Y, can be expressed as a

linear combination of its input variables, X

• Y = b0 + b1x1 + … + bnxn

• Each input variable is given a “weight” in determining how important it is to the prediction

(be careful, this is not always a correct interpretation)

LINEAR REGRESSION PICTURE

• The idea is to find the red curve, the

blue points are actual samples.

• With linear regression all points can be

connected using a single, straight line.

• This example uses simple linear

regression, where the square of the

distance between the red line and each

sample point is minimized.

K-MEANS

• K-means is a clustering algorithm that aims to partition n observations into k

clusters in which each observation belongs to the cluster with the nearest

mean, serving as a prototype of the cluster (this prototype is called the

centroid).

• This is the most commonly used unsupervised machine learning method

• It is hard to determine what to make k be, but there have been methods used

overtime to best choose (often guess and check)

THE ALGORITHM

• To run a k-means algorithm, you have to

randomly initialize k points to be centroids

• Iteratively repeat the following until

convergence:

• Cluster assignment

• Go through each of the data points and

depending on which centroid is closer, it assigns

the data points to one of the k cluster centroids.

• Move centroids

• Calculate the average of all the points in a

cluster and moves the centroid to that average

location.

SKLEARN TUTORIAL

• Now we will look at using some of these machine learning algorithms using

Python and the Sklearn library

REFERENCES

• Some material was taken from Dr. Rasheed’s CSCI 4380 lecture material

